124 research outputs found

    Mechanism of membrane tube formation induced by adhesive nanocomponents

    Full text link
    We report numerical simulations of membrane tubulation driven by large colloidal particles. Using Monte Carlo simulations we study how the process depends on particle size, concentration and binding strength, and present accurate free energy calculations to sort out how tube formation compares with the competing budding process. We find that tube formation is a result of the collective behavior of the particles adhering on the surface, and it occurs for binding strengths that are smaller than those required for budding. We also find that long linear aggregates of particles forming on the membrane surface act as nucleation seeds for tubulation by lowering the free energy barrier associated to the process

    Rectification of Confined Soft Vesicles Containing Active Particles

    Full text link
    One of the most promising features of active systems is that they can extract energy from their environment and convert it to mechanical work. Self propelled particles enable rectification when in contact with rigid boundaries. They can rectify their own motion when confined in asymmetric channels and that of microgears. In this paper, we study the shape fluctuations of two dimensional flexible vesicles containing active Brownian particles. We show how these fluctuations not only are capable of easily squeezing a vesicle through narrow openings, but are also responsible for its rectification when placed within asymmetric confining channels (ratchetaxis). We detail the conditions under which this process can be optimized, and sort out the complex interplay between elastic and active forces responsible for the directed motion of the vesicle across these channels.Comment: 8 pages, 8 figure

    The crumpling transition of active tethered membranes

    Full text link
    We perform numerical simulations of active ideal and self-avoiding tethered membranes. Passive ideal membranes with bending interactions are known to exhibit a continuous crumpling transition between a low temperature flat phase and a high temperature crumpled phase. Conversely, self-avoiding membranes remain in an extended (flat) phase for all temperatures even in the absence of a bending energy. We find that the introduction of active fluctuations into the system produces a phase behavior that is overall consistent with that observed for passive membranes. The phases and the nature of the transition for ideal membranes is unchanged and active fluctuations can be remarkably accounted for by a simple rescaling of the temperature. For the self-avoiding membrane, we find that the extended phase is preserved even in the presence of very large active fluctuations.Comment: 9 pages, 7 figure

    Universal reshaping of arrested colloidal gels via active doping

    Get PDF
    Colloids that interact via a short-range attraction serve as the primary building blocks for a broad range of self-assembled materials. However, one of the well-known drawbacks to this strategy is that these building blocks rapidly and readily condense into a metastable colloidal gel. Using computer simulations, we illustrate how the addition of a small fraction of purely repulsive self-propelled colloids, a technique referred to as active doping, can prevent the formation of this metastable gel state and drive the system toward its thermodynamically favored crystalline target structure. The simplicity and robust nature of this strategy offers a systematic and generic pathway to improving the self-assembly of a large number of complex colloidal structures. We discuss in detail the process by which this feat is accomplished and provide quantitative metrics for exploiting it to modulate self-assembly. We provide evidence for the generic nature of this approach by demonstrating that it remains robust under a number of different anisotropic short-ranged pair interactions in both two and three dimensions. In addition, we report on a novel microphase in mixtures of passive and active colloids. For a broad range of self-propelling velocities, it is possible to stabilize a suspension of fairly monodisperse finite-size crystallites. Surprisingly, this microphase is also insensitive to the underlying pair interaction between building blocks. The active stabilization of these moderately-sized monodisperse clusters is quite remarkable and should be of great utility in the design of hierarchical self-assembly strategies. This work further bolsters the notion that active forces can play a pivotal role in directing colloidal self-assembly.Comment: Supplemental Material available here: https://aip.scitation.org/doi/suppl/10.1063/5.001651
    • …
    corecore